
Repitools: A collection of utilities for understanding
epigenetic data.

Mark Robinson Aaron Statham Dario Strbenac

1 Introduction

Repitools is an R package to assist with the analysis of datasets typically found in epigenetics research.
The main focus of the package is creating summarys of promoter tiling arrays and simple analyses of
next generation sequencing, in the context of gene expression data. Functionality for Affymetrix pro-
moter arrays and Solexa sequencing data is presented. However, the functions are simple to use on
Nimblegen data too, usually with the only difference being an extra parameter being given. Consult the
help page of each function for how to use it on Nimblegen data. Furthermore, there are many options
for each function beyond those presented in this user manual.

2 Getting the Repitools package

The package can be acquired by running the command:

install.packages("Repitools", repos = "http://r-forge.r-project.org")

To get the data to use with these examples, download the RepitoolsExamples package from the
R-Forge website:

http://repitools.r-forge.r-project.org/
and install the package using install.packages(). It can then be loaded by calling the function

setupExamples(), after the package has been loaded into R (see below).
Repitools also depends on a number of packages, depending on the functions used. These include:

• aroma.affymetrix

• edgeR

• limma

• BSgenome, BSgenome.Hsapiens.UCSC.hg18

• IRanges

• ShortRead

• chipseq

Download and install these from their respective websites (e.g. Bioconductor, aroma.affymetrix)
before using Repitools.

1

mailto:m.robinson@garvan.org.au
mailto:a.statham@garvan.org.au
mailto:d.strbenac@garvan.org.au
http://repitools.r-forge.r-project.org/
http://www.bioconductor.org/
http://aroma-project.org/

3 Getting help for the Repitools package

First, users should consult the documentation available within R. For example, to access the docu-
mentation for the cpgDensityCalc, type ?cpgDensityCalc after loading the package. Alternatively,
you may call help.start() and browse the help documents (for all installed packages) through a web
browser.

For questions that are not discussed in the function documentation, Repitools has a searchable
mailing list, which can be accessed from:
https://lists.r-forge.r-project.org/pipermail/repitools-help/

Users can sign up for the mailing list through:
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/repitools-help

4 Setting up the aroma.affymetrix environment

For the analysis of Affymetrix tiling arrays, Repitools makes heavy use of the aroma.affymetrix

package, which requires data and their annotations to be in a specific directory structure (and must be
writable by the end-user). The RepitoolsExamples package has the included example data files laid
out correctly, and can be setup by executing:

setupExamples()

Successfully setwd to example data directory

Or, if you wish to copy the example data into the current working directory (for instance if the package
has been installed system-wide into a non-writable location), execute instead:

setupExamples(doCopy = TRUE)

For further information regarding aroma.affymetrix, consult the documentation at http://aroma-
project.org/ and specifically the vignette ’MAT: (Promoter 1.0R) Tiling array analysis’.

5 Reading the example data

The data used in these examples are largely from our recent paper1 where we integrated expression and
epigenetic data of normal prostate epithelial cells (PrEC) and the LNCaP prostate cancer cell line. The
example data includes Affymetrix Human Promoter 1.0R tiling arrays from a histone H3K9 acetylation
chromatin immunoprecipitation experiment, with matching Affymetrix Human Gene 1.0ST expression
arrays, and Illumina sequencing libraries.

First, references to the chip definition file (CDF) and CEL files (containing the data) are defined.
Second, a design matrix specifying the difference (’contrast’) of interest is created. Generally, the
set of tiling array CEL files is MAT normalised and smoothed2, here using the aroma.affymetrix

implementation. Some operations take place directly on the normalized data while some analyses may
make use of the smoothed values.

1Coolen et al. (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range
epigenetic silencing (LRES) reduces transcriptional plasticity. Nature Cell Biology

2Johnson et al. (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad. Sci. USA 103:
12457-12462

2

https://lists.r-forge.r-project.org/pipermail/repitools-help/
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/repitools-help
http://aroma-project.org/
http://aroma-project.org/
http://aroma-project.org/node/39

capture <- function(...) UseMethod("capture")

getNames <- function(...) UseMethod("getNames")

cdfT <- AffymetrixCdfFile$byChipType("Hs_PromPR_v02")

csT <- AffymetrixCelSet$byName("Tiling", cdf = cdfT)

csTU <- convertToUnique(csT)

MN <- MatNormalization(csT, numChunks = 15)

csTMN <- process(MN)

csTMNU <- convertToUnique(csTMN)

design <- cbind(`PrEC K9Ac` = c(0, 0, -1, 1), `LNCAP K9Ac` = c(-1,

1, 0, 0), `LNCaP-PrEC K9Ac` = c(-1, 1, 1, -1))

rownames(design) <- getNames(csT)

print(design)

PrEC K9Ac LNCAP K9Ac LNCaP-PrEC K9Ac
LNCaP_K9Ac_Input1 0 -1 -1
LNCaP_K9Ac_IP1 0 1 1
PrEC_K9Ac_Input1 -1 0 1
PrEC_K9Ac_IP1 1 0 -1

MS <- MatSmoothing(csTMNU, design = design, probeWindow = 300,

tag = "300bp_smoothing", nProbes = 10)

csTS <- process(MS, units = NULL)

Next, we perform a standard Robust Multixchip Analyis (RMA)3 on the example expression data.

cdfE <- AffymetrixCdfFile$byChipType("HuGene-1_0-st-v1")

csE <- AffymetrixCelSet$byName("geneExpression", cdf = cdfE)

bc <- RmaBackgroundCorrection(csE)

csEBC <- process(bc)

qn <- QuantileNormalization(csEBC, typesToUpdate = "pm")

csEN <- process(qn)

plm <- RmaPlm(csEN)

fit(plm)

ces <- getChipEffectSet(plm)

em <- log2(extractMatrix(ces))

rownames(em) <- getUnitNames(cdfE)

Next, we read in the positions of human genes with identifiers matched up to the Gene 1.0 ST
platform (this was adapted from the annotation provided by Affymetrix):

genes <- read.csv("annotationData/humanGenomeAnnotation.csv")

em <- em[match(genes$name, rownames(em)),]

head(genes)

name chr strand start end symbol selected_identifier
1 7896759 chr1 + 781253 783614 LOC643837 AK096570
2 7896761 chr1 + 850983 869824 SAMD11 NM_152486
3 7896779 chr1 + 885829 890958 KLHL17 NM_198317
4 7896798 chr1 + 891739 900345 PLEKHN1 NM_032129
5 7896817 chr1 + 938709 939782 ISG15 NM_005101
6 7896822 chr1 + 945365 981355 AGRN NM_198576

3Irizarry et al. (2003) Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research 31(4):e15

3

We form a design matrix to specify the average expression levels, or differential expression between
LNCaP and PrEC cells:

designE <- cbind(PrEC = c(0, 0, 0.5, 0.5), LNCaP = c(0.5, 0.5,

0, 0), `LNCaP-PrEC` = c(0.5, 0.5, -0.5, -0.5))

rownames(designE) <- getNames(csE)

print(designE)

PrEC LNCaP LNCaP-PrEC
LNCaP1 0.0 0.5 0.5
LNCaP2 0.0 0.5 0.5
PrEC1 0.5 0.0 -0.5
PrEC2 0.5 0.0 -0.5

We apply the design matrix to each gene (to give a gene-level score for each contrast):

emE <- em %*% designE

Finally, we load sequencing data for a different experiment. It has been stored compactly in a
BSgenome::GenomeDataList object only containing the chromosome, strand and start position of
each read (details on how to import data into this format are in the Section "Utility Functions"). This
data is unpublished so we describe it here as just "IP" for each cell line, but we make it available in
order to illustrate the examples. Further information will be made available when published, but the
details are not important for illustrating the Repitools package.

load("rawData/sequencing/seq_data.Rdata")

print(rs)

GenomeDataList of length 4
names(4): PrEC_IP1 PrEC_IP2 LNCaP_IP1 LNCaP_IP2

designSeq <- cbind(`PrEC IP` = c(1, 1, 0, 0), `LNCaP IP` = c(0,

0, 1, 1), `LNCaP-PrEC IP` = c(-1, -1, 1, 1))

rownames(designSeq) <- names(rs)

print(designSeq)

PrEC IP LNCaP IP LNCaP-PrEC IP
PrEC_IP1 1 0 -1
PrEC_IP2 1 0 -1
LNCaP_IP1 0 1 1
LNCaP_IP2 0 1 1

6 Data summaries

6.1 cpgBoxplots and cpgDensityPlot – Plotting Bias/Enrichment related
to CpG Density

The function cpgBoxplots is used to create boxplots of intensity, with probes stratified by GC content
and then grouped by the CpG density surrounding 600 bases of each probe (in our examples, we use a

4

window of 600 bases, but this can be tailored to a given experiment). A range of probe GC content can
be given, via the gcContent parameter, to narrow down analysis to probes with GC content in a certain
range. Each level of GC content is plotted in a separate graph. The samples parameter must be a
vector of length 2, that gives the columns of the intensity matrix to use. The number of bins that the
CpG density is binned into is controlled with the nBins parameter. Setting the parameter calcDiff to
TRUE will create a single plot of the difference of the first sample in the sample vector to the second
sample.

Examples:

cpgBoxplots(csTU, samples = c(2, 1), gcContent = 11, nBins = 50)

●

●

●●

●●

●

●●

●●●●●
●

●

●

●

●

●

●●

●●●

●

●

●●

●●

●
●●

●

●

●
●●
●
●
●

●

●●●●

●

●

●

●●
●
●
●

●

●
●

●

●●●●
●●

●

●●●

●
●

●

●
●●

●
●●●
●
●
●

●●
●
●

●●
●
●
●●
●

●●

●

●

●

●●●

●

●
●●●

●

●

●

●

●
●
●

●●●●●
●
●
●

●

●
●

●

●
●

●

●
●●

●
●●
●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●
●
●
●●
●

●
●

●●
●

●

●

●

●

●

●

●●●●

●●

●●●

●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●●

●●●
●

●

●

●

●●
●
●●●●
●
●
●
●

●

●

●
●●

●

●●●

●

●
●●

●

●
●

●
●

●

●

●
●●
●●
●
●

●

●●●
●
●●
●
●
●
●

●

●
●
●
●

●
●

●

●

●
●

●

●

●●
●●●

●

●●

●

●●
●●
●●
●

●●

●

●
●
●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●
●
●●●

●

●
●●

●

●

●

●
●

●

●

●

●
●
●●

●

●●
●
●

●

●●●

●●

●
●
●

●
●

●●
●
●●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●
●
●
●

●

●●
●●

●

●●●

●

●
●

●

●

●

●

●

●
●●

●●●
●
●
●
●
●●

●

●

●

●●

●
●●
●●

●●
●●

●
●

●
●
●

●
●
●

●

●●
●
●

●
●
●
●
●

●

●

●

●●
●
●

●●●

●

●

●
●

●
●

●
●

●

●●●●●●●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●●
●
●
●
●
●●

●
●●●

●
●●●
●

●
●

●
●

●

●

●●●●●
●

●●

●●

●●●

●●

●
●●●●
●●
●●●●
●●
●

●●●
●

●

●

●●

●●
●●●
●

●

●●●
●●

●

●

●●●●

●

●●
●

●

●

●

●

●

●●●

●●

●●

●●

●
●
●●●
●
●
●

●

●
●●

●●●

●
●●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●●●

●

●●
●

●
●●●

●●●

●

●

●

●●

●

●
●
●
●

●

●

●

●●

●●
●●
●
●

●

●●

●●
●

●●
●

●
●
●
●●

●

●

●

●
●●
●
●●
●
●●●●

●

●

●●

●

●

●●

●

●

●

●
●●
●●●
●

●

●
●
●
●

●

●

●

●

●●
●
●●
●

●

●

●

●

●
●●●●●

●

●
●

●

●●

●

●

●
●●

●
●
●

●

●

●

●●●
●
●
●
●
●●●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●
●
●
●●●●●
●

●
●

●

●
●

●

●
●

●

●

●

●●●●
●●●●●●

●
●
●
●●●
●

●
●

●●

●

●
●

●
●
●

●●
●●

●

●

●

●

●●●●

●
●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●
●●
●●●

●
●

●
●●●●
●●●
●●
●

●●
●

●

●●●●

●

●●

●

●

●

●
●
●

●●
●
●

●

●

●
●
●●●

●

●
●

●

●

●
●
●●
●
●

●●

●●●●

●

●
●
●

●

●
●

●●

●
●
●
●●

●

●

●

●●

●

●●

●

●

●
●
●
●

●

●
●
●

●
●●

●

●●

●

●
●●

●●

●●
●
●●

●●●
●●

●

●

●

●
●●
●

●

●
●

●

●

●
●●

●

●

●

●●
●

●

●

●

●●
●
●

●

●

●●●

●●

●●●
●

●

●

●●

●
●

●

●●●

●●
●●
●
●●●
●●●
●

●

●
●●

●

●
●
●

●●●
●

●
●●●

●●

●
●
●●
●

●

●

●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●
●●

●

●

●●●●●
●●

●

●
●
●●

●

●

●

●●●

●

●●●
●
●
●
●

●●●●●●

●

●

●

●●●
●

●

●●●
●
●●

●●

●
●

●
●
●

●
●
●

●

●●

●

●

●

●●
●●●
●

●
●
●

●

●
●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●●●●●●●
●

●

●
●

●
●

●●
●
●●
●●
●

●

●

●

●
●

●

●
●
●

●
●
●

●
●

●
●●

●

●

●●
●

●●●●
●
●●●
●●
●
●

●

●

●

●●
●
●

●
●
●●●
●

●●

●

●
●●

●

●

●

●
●
●

●

●

●

●●
●●●●
●

●
●

●●●
●●
●

●
●

●
●
●●
●●●

●

●
●
●

●●●

●
●

●

●

●

●●

●

●
●
●

●
●●

●
●
●

●●●

●●
●
●

●

●

●

●
●●●●
●

●●●
●
●
●

●

●

●

●
●●●

●

●●

●

●●●

●

●
●
●
●

●

●
●

●

●●

●●

●●●

●

●

●
●
●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●●
●

●

●
●●●●

●●
●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●
●
●
●

●

●●

●●●
●●
●
●●

●

●

●

●

●
●
●
●●

●

●

●

●●●
●●
●●
●

●

●●

●

●

●
●
●

●
●
●●●●

●

●

●

●

●

●
●●
●
●
●
●
●
●●
●●
●●
●

●

●●●
●●

●

●●●

●●●●
●

●

●

●

●●
●●

●

●

●●
●●

●

●

●●
●
●●
●●●●
●
●
●
●
●

●
●●
●
●

●

●

●

●

●

●●●

●

●
●
●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●●●●
●●●
●

●
●●
●
●

●

●●
●●

●
●

●
●

●
●●
●
●●
●

●

●

●
●

●
●
●

●

●
●
●
●
●
●

●

●●
●
●●
●

●

●

●

●

●●
●●
●●
●●●

●

●
●

●

●
●

●

●●●

●

●

●

●
●

●

●
●

●●

●●●
●
●

●

●

●

●

●●

●●

●

●●●

●

●
●

●

●
●
●●

●

●
●

●

●

●
●
●●
●

●

●

●

●

●●
●
●

●

●
●●●
●
●●

●

●
●

●●●

●

●
●
●

●

●●
●

●

●●●
●

●●
●

●

●

●

●
●●●
●
●

●

●

●

●
●●
●●

●

●

●
●●

●●
●
●
●
●

●
●

●●
●

●

●
●

●

●

●
●
●
●●

●
●

●

●●

●
●

●

●
●

●

●
●
●

●

●

●●
●

●

●●●
●

●
●●

●

●

●●

●●

●

●

●

●
●
●●●
●●

●●

●

●
●

●●●

●
●
●●●
●●

●●

●
●●●
●●

●

●
●

●

●
●

●
●●
●●

●
●●●
●

●
●

●

●

●

●

●●●
●●
●
●●●●

●●●

●

●

●●●●●

●
●●

●

●
●●
●●

●

●●●●●

●

●
●

●
●

●●

●

●
●
●●

●

●
●
●
●
●

●
●●●●●
●

●
●

●●
●

●

●

●●●

●
●

●
●
●
●

●

●●●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●●●
●●●
●
●

●
●●
●
●

●

●

●

●

●
●
●●

●

●

●●

●●●

●

●

●●
●

●

●●

●

●

●●●●

●●●
●

●
●●●●●●●
●

●

●

●●

●●
●
●

●

●●
●
●●

●

●

●

●●
●

●
●

●

●●●

●

●●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●
●●●●●
●●●
●
●●
●

●

●

●
●

●

●●●●

●

●

●
●●●●
●

●

●

●

●

●
●

●

●●●

●

●

●
●●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●●●

●

●

●●●

●

●

●

●●

●
●
●●

●
●

●

●

●●●

●●●

●
●

●●

●

●

●

●

●

●

●●
●
●
●
●

●●
●

●

●

●

●●

●

●

●
●
●

●●●
●●●
●
●
●
●
●

●●
●●
●●●
●
●
●
●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●●
●●

●

●

●●●●●●●

●

●●●
●

●

●

●

●●

●

●
●

●

●●
●
●●

●

●

●
●

●
●

●●

●

●
●
●

●
●

●

●●
●●●
●●
●

●
●

●
●

●
●

●
●

●●

●

●
●●

●

●
●

●

●

●

●
●
●●●●

●●

●

●
●
●●

●

●
●
●●

●●

●●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●●
●●
●
●

●

●

●

●

●●

●●

●●●

●

●
●

●
●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●
●
●

●

●

●●
●
●
●
●●

●●●
●

●

●
●
●

●
●●●
●
●●
●●

●

●

●

●●

●
●

●
●

●
●

●
●

●●
●

●●

●

●●●

●

●
●

●●
●

●

●

●
●●

●

●

●

●

●

●●
●
●●
●●

●

●●
●●

●●

●

●
●●

●

●●●
●●●●
●
●●

●

●

●

●

●

●
●●●●
●●
●
●
●
●
●

●

●

●●
●
●
●

●

●●
●
●
●

●

●
●●
●

●

●●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●
●●●●●

●

●
●

●

●

●

●

●
●

●●
●

●●

●

●

●

●
●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●●
●●●●

●

●

●

●
●●
●

●
●

●

●

●●
●

●●

●
●

●

●●
●

●

●●●●

●

●●●

●

●
●

●●●●●●

●

●

●●

●

●
●
●

●

●

●●
●●
●●●
●
●●

●

●

●
●

●●
●

●●
●

●

●

●

●

●●●

●
●
●●
●●

●

●
●

●
●●
●
●●
●
●

●●

●
●

●

●
●●
●

●●●
●●●

●●

●
●
●
●

●

●●

●

●●
●

●
●

●●
●●●

●
●

●

●

●

●
●
●
●●
●

●
●●

●
●●
●
●●
●●

●

●

●

●
●●●

●

●

●●●

●
●

●
●

●
●

●●

●●●

●

●

●
●●●
●
●●

●●●
●
●

●

●
●

●
●

●

●
●●●●●
●

●●

●

●
●
●

●

●
●
●●
●

●

●●●●
●

●

●●●●●●●
●●
●●

●

●●

●
●●
●

●●
●●

●

●

●

●

●

●
●

●

●●
●

●

●
●●

●●

●

●●●●
●

●

●

●
●
●●
●●●●●●
●

●

●
●

●

●
●

●

●
●●

●

●

●
●
●

●●
●●
●
●
●
●

●

●
●
●
●
●●

●

●

●
●
●●
●

●
●

●
●

●
●

●

●●
●●
●●

●●

●
●

●●

●

●

●●

●
●

●●
●
●●●●●

●

●

●

●
●

●

●●●●

●●

●

●

●

●

●

●
●
●●●

●

●

●
●

●

●

●

●●●

●
●
●●
●
●
●●

●

●●
●
●

●

●

●

●

●

●

●●●
●
●●

●●

●
●●
●

●●●

●
●●

●

●●

●

●

●
●
●●
●

●

●

●
●
●●

●
●●●

●

●

●

●

●

●

●
●

●

●●
●
●
●●
●●
●
●

●

●

●

●●
●
●
●●
●
●●●●●●●

●

●

●●●●
●
●

●●
●

●●●●

●●●●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●●

●
●
●●
●
●
●

●

●

●
●
●●●

●

●
●●
●

●●
●

●●

●
●
●
●
●●●
●

●

●
●●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●●●●●●
●
●●

●

●
●
●

●

●●
●●
●●●
●

●

●
●
●●●●

●
●
●

●
●●●●

●

●
●

●●

●●
●●

●
●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●
●●●

●

●
●
●
●
●●

●
●●
●

●

●
●●●

●
●●

●
●

●

●●

●

●●

●

●

●

●●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●
●●

●
●

●

●
●
●●

●

●●●●●●●
●
●

●

●
●●

●●●

●
●

●

●●

●

●

●

●

●

●

●●●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●●
●●
●
●●●

●

●

●

●

●

●
●

●●

●●
●●●
●

●

●

●●

●
●●

●

●

●
●
●

●
●

●

●●
●

●

●

●

●

●
●
●
●●●

●

●●
●

●

●
●●
●●

●

●

●●

●
●●
●

●

●
●

●

●
●
●

●

●
●
●●●
●

●

●

●

●

●

●

●●

●
●●●
●

●

●

●

●

●

●
●●
●
●
●
●

●
●
●

●
●

●
●●
●

●

●

●

●
●●
●
●●

●

●

●
●●

●
●

●
●●

●●

●●
●
●●

●

●
●●

●

●

●●
●

●

●

●

●●●●
●
●
●
●
●●

●

●

●

●●●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●●

●
●●
●
●
●●
●
●

●●

●

●

●
●
●

●

●●

●
●
●
●●●
●●●
●●

●

●

●
●

●

●

●●
●

●
●●●●●
●

●●
●●
●

●
●●
●●●

●●
●●
●

●

●

●

●

●

●
●

●
●
●●●●●●●

●

●
●

●

●●

●

●●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●
●

●

●
●

●
●
●

●

●
●●
●
●

●

●●

●

●
●
●

●

●●

●
●
●
●
●
●●
●
●

●

●●
●●

●

●
●●
●

●●

●

●

●●
●
●
●

●
●
●

●●●

●●
●

●

●
●

●

●

●
●

●
●

●

●●●

●●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●●

●

●●●
●

●●●

●

●●

●●

●
●●

●●
●●
●
●

●

●

●●●

●
●
●●

●

●
●

●●●●

●
●

●

●

●

●●●

●

●

●

●

●
●

●
●
●

●

●

●

●●●

●

●
●
●●●

●

●
●●

●●

●

●●

●
●
●
●

●

●
●●

●

●●

●
●
●●

●

●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●●
●●●
●
●●●
●●

●

●

●●
●
●●

●

●
●●
●
●●

●
●

●●
●●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●
●
●●

●

●

●●

●●

●
●●

●

●

●●●

●
●

●

●
●
●
●●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●
●

●

●
●

●
●

●

●●●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●
●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●●

●●●
●●●●●
●

●●

●

●
●
●●
●
●

●
●●●
●●

●

●

●●
●

●

●
●

●
●●

●
●●
●

●

●

●

●

●●●●
●

●●●
●
●●●
●
●
●
●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●●
●
●

●

●●
●
●

●

●
●

●
●

●●

●
●

●

●●

●

●

●●●

●●

●

●●●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●●

●
●●

●
●
●

●●●

●

●●
●●●

●

●●●●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●
●
●●
●●
●
●●
●

●

●
●

●
●

●

●

●
●
●

●
●

●●

●

●
●

●

●●●
●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●
●●

●

●●
●
●

●

●●
●

●

●

●●
●

●

●●
●
●●●

●

●

●

●●●
●●

●
●●
●

●
●

●

●●

●

●
●●●
●●

●

●
●

●

●
●
●

●

●●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●
●●●

●
●
●

●
●●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●●
●
●●●
●●●

●

●●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●●
●
●

●
●●

●
●●●

●

●

●

●
●

●

●●●

●

●●●
●
●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●●●●

●
●
●●
●

●

●●

●●●

●●●●
●
●

●
●

●

●
●

●

●

●

●

●
●
●●

●
●
●
●

●

●

●
●

●

●●●

●

●
●

●

●

●
●

●
●
●

●●●●●

●
●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●●

●●
●
●

●
●

●
●
●●●●●●●

●●

●●●●●●

●●●
●

●

●

●

●●

●

●

●

●
●●●

●●

●

●●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●●
●●
●

●●
●

●

●

●
●
●●

●

●●●●●
●
●

●

●●

●

●

●●●

●

●

●
●
●

●

●●

●
●

●

●●

●●

●
●

●

●●
●
●

●
●

●

●

●●
●

●●

●

●●●

●

●●
●

●

●
●●

●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●
●

●●●
●●
●

●

●

●●

●●

●
●

●

●

●
●
●
●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●●
●
●●

●
●

●

●
●
●●

●

●

●

●●

●

●
●

●●

●

●●●
●
●
●●
●

●

●
●

●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●●
●
●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●
●●

●

●

●
●

●●
●
●

●

●
●●
●

●●●●

●

●
●●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●
●
●
●

●●●
●

●

●

●
●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●●●●●●
●
●
●
●

●

●●●
●●●●
●

●

●

●

●
●●●

●

●

●
●

●
●
●

●

●
●

●●

●

●
●

●●
●

●

●
●●

●●

●
●●

●
●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●●●

●
●

●

●

●

●

●●●

●●

●

●
●

●
●

●

●
●●

●

●

●
●
●

●●

●

●●

●

●

●●

●

●●●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●●
●
●
●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●●

●

●

●

●
●
●
●

●

●●●

●

●

●

●

●

●

●

●●

●
●●
●

●

●
●●

●

●

●●●
●
●

●
●
●

●●●
●

●●

●●

●

●

●

●

●
●●●
●

●

●●
●

●
●
●

●●
●
●

●●●
●●

●
●

●

●●●
●●

●●●

●

●

●

●●●

●

●●
●●

●

●

●

●

●

●

●

●●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●●●
●

●

●

●

●
●●
●●

●

●
●●●●

●●
●
●

●

●
●

●●●

●

●

●

●●●●

●●●
●

●

●

●
●●●

●
●

●

●

●

●

●●
●●
●
●●●

●●

●●
●
●●●

●

●

●●
●

●

●

●
●●

●
●●

●

●

●
●
●

●
●

●
●
●

●

●

●

●●

●●

●

●

●

●●
●
●●
●
●

●

●
●
●●

●

●

●

●

●●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●
●●
●

●
●
●
●

●

●

●●●●

●

●
●

●

●

●
●

●

●

●
●

●

●
●
●
●

●●●●●

●
●●

●●

●●

●
●

●

●●●

●

●●

●

●
●
●
●
●●

●●

●●

●

●
●

●
●

●●

●●●●●●
●●

●
●●
●●●
●●
●

●●●

●
●

●
●●●
●

●
●
●
●●

●●●

●
●
●
●
●●●
●

●

●
●
●

●

●

●
●

●
●
●●●
●

●●

●

●

●
●
●

●

●
●
●●

●●

●

●

●

●

●

●●
●

●
●
●●

●●●●●

●

●●

●

●

●

●

●●●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●
●

●●
●

●

●

●
●
●
●
●
●

●

●
●

●

●

●
●●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●
●
●

●
●
●●●

●●●●●
●●

●

●
●
●
●●
●
●
●
●

●

●

●●
●●

●

●●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●
●
●
●●●
●
●●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●●●
●
●●●●
●
●
●●

●
●
●
●●●
●●
●

●

●

●

●

●●

●●
●
●

●

●●●
●
●●●

●
●

●●

●
●
●

●

●●

●●

●

●

●●●●
●

●

●

●●
●●●

●

●

●

●

●●●

●
●●

●

●
●
●●●●●
●●●●●

●

●●

●●
●
●

●

●●

●●●
●
●
●●

●

●

●

●●●●
●●●

●●●●

●

●

●

●●●

●●

●

●
●
●●

●

●
●●

●

●

●

●

●●

●

●●
●

●

(−
1e

−
09

,0
.0

1]
(0

.0
1,

0.
29

]
(0

.2
9,

0.
49

3]
(0

.4
93

,0
.6

57
]

(0
.6

57
,0

.7
93

]
(0

.7
93

,0
.9

13
]

(0
.9

13
,1

.0
2]

(1
.0

2,
1.

15
]

(1
.1

5,
1.

27
]

(1
.2

7,
1.

39
]

(1
.3

9,
1.

5]
(1

.5
,1

.6
2]

(1
.6

2,
1.

73
]

(1
.7

3,
1.

84
]

(1
.8

4,
1.

96
]

(1
.9

6,
2.

08
]

(2
.0

8,
2.

2]
(2

.2
,2

.3
2]

(2
.3

2,
2.

45
]

(2
.4

5,
2.

59
]

(2
.5

9,
2.

72
]

(2
.7

2,
2.

87
]

(2
.8

7,
3.

02
]

(3
.0

2,
3.

17
]

(3
.1

7,
3.

34
]

(3
.3

4,
3.

52
]

(3
.5

2,
3.

7]
(3

.7
,3

.9
]

(3
.9

,4
.1

1]
(4

.1
1,

4.
33

]
(4

.3
3,

4.
58

]
(4

.5
8,

4.
84

]
(4

.8
4,

5.
13

]
(5

.1
3,

5.
44

]
(5

.4
4,

5.
79

]
(5

.7
9,

6.
19

]
(6

.1
9,

6.
64

]
(6

.6
4,

7.
15

]
(7

.1
5,

7.
74

]
(7

.7
4,

8.
44

]
(8

.4
4,

9.
28

]
(9

.2
8,

10
.3

]
(1

0.
3,

11
.6

]
(1

1.
6,

13
.4

]
(1

3.
4,

15
.8

]
(1

5.
8,

18
.8

]
(1

8.
8,

22
.6

]
(2

2.
6,

27
.1

]
(2

7.
1,

33
.2

]
(3

3.
2,

62
.4

]

4

6

8

10

12

14

lightgreen=LNCaP_K9Ac_IP1,lightblue=LNCaP_K9Ac_Input1
[Probe G+C = 11] Percentage of Probes: 11.42

●

●

●

●

●

●

●

●
●●
●
●●●●●●

●
●

●

●●●

●
●

●●●●

●

●
●

●

●

●

●
●

●●

●

●
●●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●
●●

●

●

●

●●●
●
●
●

●●

●

●
●●●●●
●●

●

●

●●
●●
●

●●●

●

●

●

●●●●

●

●

●

●
●●●

●

●

●
●
●●
●●
●●●

●

●

●●

●

●

●

●

●

●
●

●
●●
●
●
●

●
●

●

●●

●●●●

●

●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●
●
●

●●●●

●

●

●
●●●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●
●
●
●●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●●●●
●●
●
●●

●

●

●

●

●

●

●●●

●
●●

●

●
●●
●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●●●●
●
●●

●

●
●

●

●

●

●
●

●
●
●
●●●
●

●
●●

●

●

●●
●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●
●

●
●
●●

●●
●

●●●

●

●
●
●
●

●

●

●
●

●●
●
●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●
●
●

●
●

●
●
●
●

●
●●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●
●●●
●

●●●
●
●

●

●
●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●
●
●●

●

●●●

●
●

●

●
●
●●

●

●●
●
●●●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●●●

●●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●●
●
●

●●
●●

●●
●●

●

●

●

●

●
●●

●

●
●

●

●●

●

●●

●

●
●●●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●●

●

●
●
●

●
●
●
●

●

●●
●

●
●
●
●
●

●●

●

●

●●
●
●●

●●

●
●

●

●

●

●
●
●●●

●

●

●●
●

●
●
●
●

●●
●
●

●

●

●

●

●

●

●

●●
●
●●

●
●●●

●

●●

●

●

●●

●

●

●

●
●●
●●
●

●●
●●

●●●
●
●

●
●
●
●
●
●
●●

●

●
●
●●

●
●

●

●
●

●
●
●●●

●●●●
●

●
●

●
●●●●●
●●●●

●

●

●

●

●
●●

●●

●

●●

●

●●

●
●
●●●●

●
●
●●
●●●
●
●●
●

●

●
●

●

●

●

●●●●

●
●
●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●
●●●

●

●

●
●

●●

●●
●

●
●

●●●●●●
●

●

●●●●

●

●
●
●

●

●●

●
●

●

●●●●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●
●

●

●●●

●

●
●
●

●
●●
●

●

●
●

●
●
●

●
●●

●

●

●

●●●

●●●●●

●●

●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●

●●●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●●
●●

●

●

●

●
●

●
●
●
●

●
●●
●
●●

●

●
●

●
●

●

●
●

●●
●
●
●

●

●
●

●

●
●●
●
●
●

●●●●

●
●

●●●●●

●

●●
●
●
●
●●

●

●●●
●

●

●

●

●

●

●●
●●●

●

●●

●

●
●
●
●

●

●
●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●
●●
●

●

●●●●

●

●

●

●●
●

●

●●●●
●

●

●
●
●●●

●
●
●●

●

●

●●
●●

●

●

●

●

●

●●

●
●●
●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●
●

●
●
●●
●

●

●

●

●●
●●
●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●●●●●

●●
●●
●
●●●

●

●
●

●

●
●
●

●
●
●

●
●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●
●●

●

●●●

●

●●

●

●

●●●●●●

●

●

●

●●●

●

●●
●
●●

●

●
●
●

●

●

●
●

●

●
●
●●

●

●●

●
●

●

●

●●●●

●●
●●●●

●

●
●
●
●

●
●

●
●
●

●●

●
●

●

●

●

●
●

●
●●
●●
●
●
●
●●

●

●●●
●●

●●
●

●

●
●
●
●●

●

●

●●●●●
●
●●●

●●
●

●
●●●
●

●

●

●●
●

●●

●●●

●

●●

●

●
●●
●
●●
●●
●

●●

●

●
●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●
●
●●

●
●

●●●●

●●

●

●
●
●
●
●●

●

●

●

●
●●
●

●

●

●

●●●

●

●

●

●●

●

●●

●

●
●

●

●●
●●

●

●

●●●

●

●
●●
●●

●

●
●
●

●
●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●●●
●●●●
●

●

●●

●

●●●
●
●

●

●
●●●

●

●

●●

●

●

●

●●

●

●

●
●
●●

●

●

●

●
●●
●
●

●

●

●●

●
●
●

●

●
●

●

●●
●●
●

●

●

●
●

●

●

●

●●
●●

●●

●

●●
●●
●

●●

●

●

●

●

●

●
●
●
●●
●

●

●
●
●
●●

●

●

●
●

●

●

●
●

●

●●
●

●●
●

●●

●●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●●
●
●●
●
●●
●

●

●●

●●●

●

●●●●
●

●

●
●

●

●

●

●

●

●
●●●

●

●
●●
●
●
●

●

●●

●●

●

●

●●

●

●●
●●

●

●

●
●●●
●●

●●●●

●●

●
●

●●

●

●

●●●●

●

●

●
●●

●

●

●●

●

●

●●
●
●●

●

●●
●●●

●
●

●
●
●●

●●

●

●
●

●●

●●
●
●

●

●

●●

●●
●

●

●●

●
●

●

●

●●●

●

●●

●
●
●●
●●●●●

●

●

●
●●
●
●

●

●

●

●●
●
●

●

●
●●●
●
●●●

●●●

●

●

●●

●

●
●
●●

●

●
●
●

●

●●●
●●

●

●

●●●
●
●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●●

●

●

●

●●●

●

●
●

●●
●
●

●
●●●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●●●●

●●●●

●●
●

●●
●

●●
●
●
●

●

●

●

●

●

●
●●

●
●
●

●●

●

●

●
●
●
●

●

●
●

●●●
●
●

●●

●

●

●

●

●
●
●

●
●
●●

●

●

●
●
●

●

●
●
●

●

●

●
●
●
●

●

●

●
●

●

●
●●●●
●●●

●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●

●●
●
●

●

●●

●
●

●
●

●●

●●●

●

●●●●●

●
●

●
●
●●●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●●
●●
●
●

●●
●●
●●●

●●●●●
●

●

●

●●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●
●
●

●●●

●
●

●

●

●●

●●

●

●●

●

●●
●

●

●

●●

●

●
●
●

●
●
●

●
●●
●
●●

●
●

●
●
●
●●
●●

●

●

●
●●●

●

●●●

●

●

●
●
●●
●

●

●

●
●

●
●
●

●●●
●

●

●●
●
●

●●

●

●

●●●

●

●●●●●●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●
●
●

●

●
●●

●

●
●
●●

●

●●●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●●

●

●
●●●●

●●●

●●●

●●
●●●

●
●

●
●
●
●
●

●
●

●

●●

●●●

●

●
●

●

●

●

●

●

●●
●

●●●

●●

●

●

●

●

●

●

●
●●
●●●●●●
●

●

●
●
●
●

●

●

●

●

●

●
●
●●

●

●

●●

●
●

●

●●
●●●
●●
●

●●

●●

●
●
●
●

●
●

●●

●

●●●

●

●
●●
●

●●

●

●

●●

●

●
●●
●
●
●

●●●●

●

●
●
●●●

●

●

●

●

●

●
●

●
●●●
●●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●●

●

●●

●
●●

●●

●

●
●

●

●

●●
●
●●

●

●
●
●

●

●

●●

●●

●

●●
●

●

●
●●●●●
●●

●

●

●

●
●
●●
●
●●
●

●

●
●
●●●
●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●
●
●
●
●
●
●●
●●●
●

●
●

●

●

●●

●
●
●●●
●

●
●

●

●

●●

●

●●●
●
●

●●●
●

●

●

●
●
●●

●●

●●

●

●

●●●●●

●
●●

●

●●

●

●●

●●●

●
●

●●

●

●
●

●

●
●
●●

●
●

●
●
●
●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●●

●●

●

●

●
●

●●●●

●
●●

●
●●
●●

●

●

●

●

●

●●
●
●
●
●

●

●

●
●

●

●
●●
●
●●
●●
●

●

●

●●

●

●

●●●
●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●
●

●●

●

●
●●
●

●●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●
●●
●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●●
●

●

●

●
●

●

●●●●

●●

●●●

●

●●

●

●
●
●

●

●

●

●

●

●●●
●

●

●●
●●

●

●●●

●
●

●

●

●
●

●
●

●●

●

●

●●●

●

●

●

●

●
●●
●

●

●

●

●●

●●

●●

●●

●
●

●●●

●

●●●●

●
●
●

●

●

●

●

●

●●
●

●
●

●
●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●
●
●●
●
●

●

●

●●●●
●
●●

●
●●

●

●

●

●●●●●
●●

●

●

●
●

●

●

●●
●

●

●

●●

●●●
●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●●

●
●
●●●●

●
●

●

●●
●

●●●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●
●

●

●

●●
●
●●●
●●
●●
●

●

●

●
●

●●●

●
●

●
●●●
●

●

●

●●●

●
●●
●

●
●●

●
●

●

●

●

●

●●●

●

●

●

●
●
●

●

●●●

●

●●●

●

●
●

●
●●

●
●

●●●●

●
●

●●●●

●

●

●●

●

●

●

●

●
●
●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●
●●
●
●●

●●

●

●●

●●●

●
●

●

●

●
●
●●
●
●

●

●
●●
●●●
●●

●
●

●

●

●●

●

●

●●●●
●
●

●
●

●●

●

●●
●●
●
●●●●●
●
●●●●
●
●

●

●●
●

●

●

●

●●
●

●●●

●

●●●

●

●●●●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●●●
●
●
●

●

●
●

●●
●●

●

●

●●

●

●
●●●

●

●
●
●

●
●
●

●

●●

●
●
●●

●
●●●
●

●
●●
●

●

●

●●
●●●●
●

●

●

●

●●

●●

●

●
●

●

●

●
●
●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●
●
●

●

●●

●

●
●●

●

●

●●●
●
●

●

●

●
●

●●
●

●●
●
●●
●●
●
●

●●
●●
●

●

●●●●●●●

●

●
●●●
●

●

●
●
●

●

●●●

●

●

●

●
●

●
●

●

●

●●

●●●

●
●
●

●

●

●
●
●

●●●
●
●

●●

●

●

●
●●●

●

●

●●
●

●

●

●●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●

●●

●

●
●
●
●●

●

●●

●

●●

●
●

●●

●

●

●

●●●

●

●●●●
●
●●

●●●●

●

●
●●●
●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●
●

●

●●●●●

●

●

●

●
●●
●
●●●
●
●

●

●
●●●

●
●

●

●
●

●

●●
●

●●●●

●●

●

●

●
●●
●
●

●●

●
●●●
●

●

●●●●
●

●

●

●

●
●●
●●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●●●

●
●
●

●

●●

●●●
●

●●

●

●

●

●●●

●

●

●

●

●●

●

●
●●●●

●●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●
●

●●●●●

●

●

●
●
●
●

●

●

●

●

●
●

●●
●●

●●
●
●●
●●●●
●
●

●

●●●

●●●

●

●
●
●●

●●

●

●
●

●

●●
●
●
●

●

●●

●

●●
●●
●

●

●

●●●
●
●
●

●
●
●

●

●●
●

●●

●●●●

●

●
●
●
●●
●●●●
●

●

●

●●●

●

●

●

●

●
●●
●

●

●●
●
●
●
●
●
●
●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●●●
●
●
●
●

●●●
●

●

●

●
●
●

●●

●

●

●

●
●

●
●

●●
●
●●

●●●●●●●

●

●

●

●●

●●●

●

●

●●
●
●●●●
●

●●

●

●

●●●

●

●

●●

●●

●
●
●
●

●

●

●

●●

●●●

●
●
●

●
●

●

●

●●

●●●

●●

●

●
●

●●
●

●

●
●●●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●●●●●●
●●

●

●●

●
●
●●

●●●

●●

●●●
●

●●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●●
●

●

●

●

●
●●●
●
●
●
●

●
●
●

●

●●

●

●

●

●●●
●●

●

●

●

●

●

●●

●

●

●

●

●
●●
●
●

●

●●

●

●
●●●●●

●●

●
●
●
●

●

●

●

●

●
●
●
●
●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●●
●
●●
●●●●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●●

●●

●●

●
●
●

●

●●

●
●
●●
●

●

●
●

●

●

●

●●

●

●

●●

●●

●●●●
●

●
●

●

●
●

●

●
●●

●●

●

●
●
●

●●●
●
●

●●
●

●●

●●●●●●●

●

●

●

●

●
●
●
●●

●●●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●
●

●

●

●●●
●●
●●

●

●

●

●

●

●

●

●●●

●

●
●●

●●
●
●
●●

●
●

●

●

●

●
●●

●

●●

●

●
●●

●

●
●●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

●

●
●
●

●●

●●●

●
●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●●●●

●●
●●
●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●
●
●●●●
●●●●

●
●●

●
●

●●

●

●
●●

●
●

●

●

●
●●●
●●●●
●

●

●●
●

●●

●

●●

●●

●●●

●

●●●

●

●

●

●

●

●
●

●●

●●

●
●

●●●●●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●

●
●
●

●

●

●●

●

●
●
●●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●
●

●

●
●
●

●
●
●
●

●

●●

●
●
●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●●●●●
●
●

●

●

●

●

●
●●

●
●

●

●
●
●
●

●

●

●

●
●
●●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●
●
●
●

●

●

●

●
●●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●
●●
●
●

●

●

●

●
●
●
●

●

●

●●

●

●
●

●
●

●

●
●●

●

●

●

(−
1e

−
09

,0
.0

1]
(0

.0
1,

0.
29

]
(0

.2
9,

0.
49

3]
(0

.4
93

,0
.6

57
]

(0
.6

57
,0

.7
93

]
(0

.7
93

,0
.9

13
]

(0
.9

13
,1

.0
2]

(1
.0

2,
1.

15
]

(1
.1

5,
1.

27
]

(1
.2

7,
1.

39
]

(1
.3

9,
1.

5]
(1

.5
,1

.6
2]

(1
.6

2,
1.

73
]

(1
.7

3,
1.

84
]

(1
.8

4,
1.

96
]

(1
.9

6,
2.

08
]

(2
.0

8,
2.

2]
(2

.2
,2

.3
2]

(2
.3

2,
2.

45
]

(2
.4

5,
2.

59
]

(2
.5

9,
2.

72
]

(2
.7

2,
2.

87
]

(2
.8

7,
3.

02
]

(3
.0

2,
3.

17
]

(3
.1

7,
3.

34
]

(3
.3

4,
3.

52
]

(3
.5

2,
3.

7]
(3

.7
,3

.9
]

(3
.9

,4
.1

1]
(4

.1
1,

4.
33

]
(4

.3
3,

4.
58

]
(4

.5
8,

4.
84

]
(4

.8
4,

5.
13

]
(5

.1
3,

5.
44

]
(5

.4
4,

5.
79

]
(5

.7
9,

6.
19

]
(6

.1
9,

6.
64

]
(6

.6
4,

7.
15

]
(7

.1
5,

7.
74

]
(7

.7
4,

8.
44

]
(8

.4
4,

9.
28

]
(9

.2
8,

10
.3

]
(1

0.
3,

11
.6

]
(1

1.
6,

13
.4

]
(1

3.
4,

15
.8

]
(1

5.
8,

18
.8

]
(1

8.
8,

22
.6

]
(2

2.
6,

27
.1

]
(2

7.
1,

33
.2

]
(3

3.
2,

62
.4

]
4

6

8

10

12

14

cpgBoxplots(csTU, samples = c(2, 1), gcContent = 12, nBins = 50,

calcDiff = TRUE)

5

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●
●

●●

●
●

●●
●

●●●●

●
●

●●

●

●
●

●

●●

●

●

●● ●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●●
●
●●●

●

●●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●

●
●●●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●●●●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●
●
●

●

●

●

●
●

●

●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●●

●
●

●

●

●●●

●●●

●

●●

●●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●
●●

●

●

●
●

●

●●
●
●
●

●

●

●

●
●

●

●
●●
●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●●
●
●●●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●●
●

●●

●●●
●
●
●

●●

●

●

●●

●

●

●●

●●●

●

●

●●
●●●
●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●●●●
●
● ●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●●

●

●●●

●

●

●

●

●

●

●
●
●●

●
●

●●

●

●
●

●

●●

●
●

●

●

●
●

●

●●●
●

●●

●●

●

●
●
●●
●●●●●
●

●

●

●
●

●

●●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●●
●●
●

●

●●

●●
●
●

●●●●●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●
●●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●●●

●

●●●
●

●●

●●●

●

●●

●
●

●●

●

●

●●

●

●
●
●●●
●●

●

●
●

●
●●

●

●
●
●●

●

●
●

●

●
●●
●●

●●

●●
●●●

●

●

●

●

●
●
●
●

●

●
●
●

●

●
●

●

●●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●●

●●●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●
●
●

●

●

●●
●●

●●
●
●

●

●

●

●
●

●

●●

●●

●

●●●●

●●

●
●

●

●
●

●

●

●

●●●
●
●●

●

●

●

●

●

●
●

●

●

●●●●●
●

●

●

●●
●●●●

●

●

●●

●

●

●

●●

●

●
●
●●
●●
●●●

●

●

●

●●

●

●●

●●
●●
●
●
●

●
●

●

●
●

●●

●

●●●

●●

●

●
●

●

●

●

●
●

●

●
●
●

●●

●
●

●

●

●●

●●●●●

●

●●●
●●
●
●●●

●

●●●●

●

●●●
●

●
●●●●

●●
●
●

●

●

●●
●
●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●●●

●

●●

●

●

●

●●
●●

●

●

●
●●●

●

●

●

●

●

●
●
●
●●

●●
●●

●

●

●●
●
●

●
●
●

●

●

●●●●
●

●
●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●
●●●●
●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●
●
●●●
●●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●
●●

●

●
●
●

●●

●

●

●●

●●

●

●

●●

●
●

●

●●●●

●

●●●●●

●

●

●
●
●
●

●●

●

●

●●

●
●

●

●●●●●
●
●
●
●

●

●●
●

●

●
●
●●

●●

●

●

●●
●

●

●
●●
●

●

●●

●

●●

●

●

●

●

●

●
●●●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●
●●

●●●
●
●●

●

●

●●

●

●

●●●

●

●

●●
●

●
●●

●

●●
●●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●●

●●

●

●●

●
●●●● ●

●

●●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●●●

●

●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●●●●●●

●

●

●●

●
●●

●●

●

●

●
●●●
●
●

●
●
●●
●

●●●

●
●

●

●

●●

●

●

●●
●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●●
●
●●
●●

●●

●
●●

●
●

●
●
●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●●
●

●

●●

●

●●●●

●

●

●
●
●●
●
●

●

●

●

●

●
●

●

●●●

●

●

●
●●●●●●

●●

●

●

●
●●●●
●
●●

●

●

●

●●

●

●

●

●●●●
●
●

●
●

●
●

●

●

●

●

●

●
●
●

●

●●
●
●
●●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●●●

●

●
●

●

●

●●

●

●●●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●
●
●●
●●●
●

●
●
●●●

●

●
●●
●

●

●●
●

●

●

●

●●
●

●●

●
●

●

●

●●

●

●●●

●●

●●

●

●●

●●

●
●

●
●●●

●

●

●

●

●●●●

●

●●

●

●●●●●●

●

●

●

●

●
●●●
●
●●●●●●
●●
●

●●●

●

●

●

●
●

●●
●
●
●

●
●●●

●

●●●
●
●

●

●●●

●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●
●
●●
●●
●

●

●

●

●●●●

●

●

●●●

●
●●●
●
●

●

●

●

●

●

●
●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●
●
●

●●

●
●●

●

●
●●
●●

●
●
●

●

●
●

●

●

●

●●
●

●

●
●
●

●

●
●
●

●

●

●

●●
●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●
●●
●●●●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●●
●

●●

●●
●●

●

●

●
●●●●

●

●●
●●

●

●

●
●
●

●

●
●
●
●

●●

●

●

●●

●●

●

●●

●
●

●
●

●

●

●●
●

●

●

●
●

● ●

●●●●

●

●●

●

●

●

●●

●

●

●
●●●
●●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●●
●
●●
●●

●

●

●

●
●

●
●
●
●

●

●

●●●

●●●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●●
●
●●

●

●●

●

●
●

●
●

●
●

●

●

●
●
●●●●
●
●●

●

●
●

●

●
●
●

●

●

●●●
●

●

●

●
●

●

●
●

●●●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●●●●

●●
●●●
●

●

●

●

●●●
●
●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●
●

●●●●
●●

●

●
●
●
●●●●
●
●●
●
●
●
●●

●

●
●
●●
●

●
●

●●

●

●

●

●●

●

●

●

●●
●●
●
●
●

●
●
●

●

●●

●
●

●●
●
●

●

●
●
●

●●●

●

●

●

●●●●●●

●
●
●●

●

●●●
●

●

●●
●●

●
●

●

●●●

●

●●

●

●

●●

●

●●
●

●

●

●

●●
●
●
●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●
●
●
●

●●

●●
●
●

●

●

●
●

●

●●

●

●

●●

●
●●
●●
●

●●●
●
●

●●
●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●●
●

●
●

●

●
●●

●

●●
●
●

●

●●
●
●●
●

●●

●

●

●

●●

●

●

●

●●
●
●
●●
●

●
●

●
●●●●
●●●

●

●
●●

●

●

●

●

●
●

●●●
●●
●●

●

●●
●

●

●
●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●
●●●
●

●

●

●●
●●●●●

●

●
●

●

●●●●●
●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●
●
●●
●

●

●●
●
●●●●
●

●

●
●●

●

●●

●●

●
●●

●

●
●
●

●●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●●●●
●

●

●

●●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●
●

●

●●

●
●●

●

●
●●

●

●

●
●
●

●
●

●

●
●
●
●●●

●

●

●

●●

●

●

●

●
●
●
●●

●

●

●

●
●
●●

●

●●
●

●

●
●

●
●
●●

●

●

●

●

●●●●●●●

●

●

●

●
●
●

●●

●

●
●
●
●

●

●
●
●

●

●●

●
●
●

●

●

●●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●●●
●
●
●●●

●

●

●●●

●
●

●

●●

●●
●

●

●

●

●

●

●

●●●●●

●

●

●

●
●●●●

●●

●
●

●

●●●

●
●●
●
●●

●

●●●
●●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●●

●

●

●

●

●

●
●●
●
●●●
●

●

●

●

●●●●
●

●

●
●

●
●
●●●
●●●●
●●●
●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●
●●

●

●●●

●

●
●

●

●●
●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●
●●

●●●●●●
●
●

●●

●

●
●

●
●
●●

●

●

●

●●●●
●●●
●

●

●

●●

●

●●
●●
●
●●

●
●
●

●

●
●

●

●
●●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●
●●

●

●●

●

●●

●

●
●●

●●

●
●
●●

●
●●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●●●
●●

●

●●●

●
●

●●●●●
●
●●

●

●
●
●

●

●●
●●

●

●

●

●
●
●

●

●

●
●
●

●●●●●●

●●
●●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●●

●

●

●●
●
●
●
●●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●●●

●

●

●

●

●

●
●

●
●●●

●

●

●●●
●

●

●
●
●
●

●
●
●
●

●

●●

●
●

●

●
●
●

●
●

●●

●

●●●

●●

●
●
●
●
●

●

●

●
●

●
●

●●●
●
●

●

●

●●●
●●
●●

●

●

●

●●
●●
●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●●●
●

●

●
●
●
●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●
●●●●●
●

●

●

●

●

●
●●●

●
●

●

●
●
●

●

●

●●

●

●●●

●

●
●
●
●
●●

●●
●
●
●

●

●●
●

●

●
●
●

●

●●●●●●

●

●
●

●●

●
●
●●

●

●
●

●

●●

●

●

●

●●

●
●●

●

●

●●

●
●

●

●
●
●
●

●

●

●●

●

●
●

●
●
●

●

●●

●

●
●

●

●

●

●

●
●

●●

●
●
●●●
●
●

●

●

●

●

●

●
●●
●●●

●
●
●

●
●●●●●
●

●

●
●
●

●
●
●

●

●
●

●

●
●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●●●

●

●

●●

●

●

●

●●●

●

●
●

●●●

●●

●

●

●

●

●●

●
●
●

●

●
●

●●

●

●●●●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●●●
●●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●
●

●

●

●

●
●

●

●
●●

●

●
●
●

●●

●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●

●●●
●
●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●
●●

●
●

●

●
●

●

●

●
●
●

●

●
●

●●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●

●

●

●●
●

●
●
●
●●

●
●

●
●

●

●

●●●
●

●●

●

●

●

●

●
●
●
●●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●
●

●
●●
●
●●●

●

●
●
●

●

●●

●
●
●●

●

●

●

●
●

●

●

●●
●

●

●●
●
●●
●
●●

●
●●

●

●●●
●
●●

●

●●●

●

●

●●●

●

●●●●
●
●●

●

●●

●

●
●
●●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●●

●●

●●
●●●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●●
●
●

●
●
●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●
●●●●

●
●
●●
●

●

●
●
●●

●

●

●
●

●

●
●
●

●
●

●
●

●●

●●

●

●
●●

●

●●
●●●
●●
●
●●

●

●●

●●

●

●
●●

●●
●

●

●

●●

●

●●
●●
●

●

●●
●●

●

●
●
●
●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●●

●●
●●●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●
●
●

●

●
●
●●
●

●

●
●
●

●

●
●
●
●

●

●●
●

●

●
●●●

●●
●
●●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●
●
●
●●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●●
●
●●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●
●

●●

●

●

●●
●●●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●●

●

●

●
●
●●●

●
●

●

●●

●

●

●
●●

●●
●

●
●
●
●●

●

●

●●

●●

●

●●

●
●
●

●●

●●●●●●●●

●

●

●
●

●

●

●●

●

●●
●●

●
●

●●
●●
●

●●

●

●●
●

●●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●●●●●●●

●

●
●●●
●●

●

●

●

●

●●
●●
●
●
●●
●

●
●
●

●

●
●●

●

●

●

●

●●●

●

●

●
●

●

●
●
●

●

●
●

●
●

●●

●●

●

●
●●●●●
●●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●●●

●

●
●●●●
●●

●

●

●

●
●

●
●●
●

●●
●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●
●●
●
●●●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●●
●●

●
●●

●●
●

●

●

●●●●
●
●●

●

●●
●

●●
●
●

●

●
●●●●●

●
●●

●

●

●

●

●●●

●

●●●
●
●●●
●

●

●

●

●

●●

●

●●

●

●
●
●●

●
●

●
●

●●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●●●

●●●●

●

●
●●●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●●
●
●

●

●

●

●●
●
●●
●
●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●
●
●●
●

●

●

●

●

●●●
●

●

●
●
●●●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●●
●
●●
●

●

●

●
●

●

●●

●

●

●
●
●

●●
●
●

●

●

●

●●
●

●
●

●
●

●
●●
●●●

●●
●

●

●

●●

●
●

●

●

●
●
●●

●●
●●

●●
●

●
●●

●

●
●
●
●
●
●
●
●●
●
●●●

●

●●
●●

●

●

●

●

●

●●●

●●
●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●
●
●
●

●

●
●●●

●

●

●●●●
●

●

●●

●

●

●●

●

●
●
●

●

●●●●●●

●

●

●
●

●

●
●

●
●
●

●

●●
●

●

●●●●
●

●

●

●●●
●

●●

●

●
●

●

●●

●

●●

●

●
●●●
●●
●●●●

●

●

●●
●

●●●
●

●

●

●
●●●
●
●

●

●
●●
●
●
●●
●

●

●●●

●●
●
●
●

●

●

●

●

●●

●

●

●

●

●●

●●●

●●

●

●●●●●
●
●●
●●●●●
●

●

●

●
●

●

●●
●
●
●

●

●

●

●
●

●●●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●●●●●

●

●

●

●●●
●●●
●●●
●●
●●

●

●●●

●

●
●
●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●
●
●

●●
●

●

●●

●

●
●

●●

●
●

●

●●
●
●

●

●●
●
●
●●●
●
●

●

●

●●●●

●

●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●●

●

●

●
●●

●

●
●
●

●

●

●●
●
●

●●
●
●
●

●

●

●

●
●●●●●

●
●●
●

●
●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●
●

●

●●
●
●

●●●
●

●

●

●●

●
●
●
●
●

●
●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●●

●

●

●
●

●

●●
●

●

●

●●
●●

●●●
●●
●

●
●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●●●

●
●
●
●
●
●
●
●

●

●●

●
●

●

●

●●

●●
●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●●

●
●
●
●

●
●

●●●●

●
●

●●●●●●

●

●

●

●

●

●

●
●●

●●
●
●

●

●
●

●

●●●
●
●●

●●

●
●

●●

●
●●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●
●●
●●●

●●

●

●
●

●

●
●●●●

●

●●
●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●
●●
●

●
●

●

●●●
●

●

●

●●

●

●
●

●●
●

●

●

●

●

●●
●

●

●●●
●●

●●●●

●

●

●●

●

●

●

●

●
●

●●
●
●●●●●

●

●●

●

●●●●●
●

●
●
●
●

●

●●

●

●

●

●●

●

●●●
●
●
●
●●●

●

●

●
●●

●

●
●●●
●

●

●

●●
●
●

●

●●●

●

●
●●●

●
●
●

●●

●

●●
●●●

●

●
●

●

●
●
●

●
●●

●

●

●
●●

●

●
●
●

●●●●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●
●
●

●

●
●
●
●
●
●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●
●
●●●●●●
●
●

●

●

●

●

●

●
●

●
●
●

●

●
●●
●

●

●
●●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●
●

●
●
●

●

●●
●
●●

●

●
●●

●

●●

●●

●●
●
●
●●●●

●
●
●●

●

●

●●●

●

●

●
●

●

●●

●

●
●

●●

●

●●

●

●

●●●
●●
●●●
●
●

●

●

●
●

●

●

●●
●
●

●

●●●

●

●●●●●●

●
●

●

●

●

●

●

●

●●

●
●●●
●
●

●●
●

●
●●

●

●

●
●

●

●

●

●
●●●●●

●
●
●●
●

●●

●
●

●

●

●
●
●
●●●
●
●

●●●
●
●●

●

●
●

●

●
●●● ●

●●

●●
●

●●

●

●
●●●●
●●

●
●
●
●●

●

●
●●
●

●

●
●

●
●
●
●
●
●

●

●

●●

●

●●●
●●●
●
●●

●

●
● ●

●
●
●●●●●●●●

●

●●●
●
●
●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●

●

●
●
●

●

●●●
●●

●

●

●

●

●
●●
●
●

●

●●

●

●
●
●

●●
●

●

●

●●●

●

●

●

● ●●
●

●

●

●

●

●

●

●●●●
●
●

●
●

●
●●

●

●
●

●

●●

●

●

●●
●●●●

(−
1e

−
09

,0
.0

1]
(0

.0
1,

0.
29

]
(0

.2
9,

0.
49

3]
(0

.4
93

,0
.6

57
]

(0
.6

57
,0

.7
93

]
(0

.7
93

,0
.9

13
]

(0
.9

13
,1

.0
2]

(1
.0

2,
1.

15
]

(1
.1

5,
1.

27
]

(1
.2

7,
1.

39
]

(1
.3

9,
1.

5]
(1

.5
,1

.6
2]

(1
.6

2,
1.

73
]

(1
.7

3,
1.

84
]

(1
.8

4,
1.

96
]

(1
.9

6,
2.

08
]

(2
.0

8,
2.

2]
(2

.2
,2

.3
2]

(2
.3

2,
2.

45
]

(2
.4

5,
2.

59
]

(2
.5

9,
2.

72
]

(2
.7

2,
2.

87
]

(2
.8

7,
3.

02
]

(3
.0

2,
3.

17
]

(3
.1

7,
3.

34
]

(3
.3

4,
3.

52
]

(3
.5

2,
3.

7]
(3

.7
,3

.9
]

(3
.9

,4
.1

1]
(4

.1
1,

4.
33

]
(4

.3
3,

4.
58

]
(4

.5
8,

4.
84

]
(4

.8
4,

5.
13

]
(5

.1
3,

5.
44

]
(5

.4
4,

5.
79

]
(5

.7
9,

6.
19

]
(6

.1
9,

6.
64

]
(6

.6
4,

7.
15

]
(7

.1
5,

7.
74

]
(7

.7
4,

8.
44

]
(8

.4
4,

9.
28

]
(9

.2
8,

10
.3

]
(1

0.
3,

11
.6

]
(1

1.
6,

13
.4

]
(1

3.
4,

15
.8

]
(1

5.
8,

18
.8

]
(1

8.
8,

22
.6

]
(2

2.
6,

27
.1

]
(2

7.
1,

33
.2

]
(3

3.
2,

62
.4

]

−4

−2

0

2

4

6

salmon=LNCaP_K9Ac_IP1−LNCaP_K9Ac_Input1
[Probe G+C = 12] Percentage of Probes: 11.11

The function cpgDensityPlot uses cpgDensityCalc (see Section "Utility Functions") on sequenc-
ing data to examine the CpG density distribution of reads, a useful quality control step for methylated
DNA enrichment experiments.

takeSample <- function(rs, f = 0.1) {

gdapply(rs, function(x) {

p <- x[["+"]]

n <- x[["-"]]

list(`+` = sample(p, f * length(p)), `-` = sample(n,

f * length(n)))

})

}

rsSub <- takeSample(rs, f = 0.1)

cpgDensityPlot(rsSub, seqLen = 300, organism = Hsapiens)

6

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

CpG Density Plot

CpG Density of reads

F
re

qu
en

cy

PrEC_IP1
PrEC_IP2
LNCaP_IP1
LNCaP_IP2

6.2 enrichmentPlot – Plotting Enrichment over the whole genome

Similarly, enrichmentPlot (which uses enrichmentCalc) can plot the distribution of enrichment over
the whole genome, useful for quality control of any enrichment-based sequencing experiment.

enrichmentPlot(rsSub, seqLen = 300, organism = Hsapiens, verbose = TRUE)

Extending reads
Creating coverage object
Calculating enrichment
Normalising to reads per lane

7

0 5 10 15 20

1e
+

01
1e

+
03

1e
+

05
1e

+
07

1e
+

09
Enrichment Plot

Normalised Enrichment Level of reads

F
re

qu
en

cy

PrEC_IP1
PrEC_IP2
LNCaP_IP1
LNCaP_IP2

6.3 binPlots – average signal proximal to annotation in bins

Binned plots are a way of exploring the relationship between epigenomic signals and some external
measure. For example, it is possible to bin the tiling array or sequencing data by the level of expression
and visualize the signal across a region up- and downstream of the transcription start sites. There are
three types of visualization: lineplots, heatmaps and "terrain" diagrams.

We use expression data processed through RMA from above (the ’em’ data.frame) and use the ta-
ble of annotation (the ’genes’ data.frame).

The first time binPlots is called, it will create a mapping between the gene positions supplied and
the probes on the tiling array, which is returned. Keeping this mapping and passing it to subsequent
binPlots calls as the probeMap parameter will speed up plotting. Here are some examples:

lookupT <- binPlots(extract(csTS, 1), coordinatesTable = genes,

ordering = emE[, "PrEC", drop = FALSE], plotType = "line",

nbins = 10)

8

−6000 −4000 −2000 0 2000

0
1

2
3

Position relative to TSS

S
ig

na
l

Line Colours

(1.72,3.32]
(3.32,3.93]
(3.93,4.46]
(4.46,5]
(5,5.59]
(5.59,6.24]
(6.24,6.87]
(6.87,7.52]
(7.52,8.36]
(8.36,13.9]

Signal:PrEC K9Ac Order:PrEC

binPlots(extract(csTS, 2), probeMap = lookupT, ordering = emE[,

"LNCaP", drop = FALSE], plotType = "line", nbins = 10)

9

−6000 −4000 −2000 0 2000

0
1

2
3

4

Position relative to TSS

S
ig

na
l

Line Colours

(1.65,3.29]
(3.29,3.88]
(3.88,4.39]
(4.39,4.92]
(4.92,5.51]
(5.51,6.21]
(6.21,6.95]
(6.95,7.64]
(7.64,8.46]
(8.46,14]

Signal:LNCAP K9Ac Order:LNCaP

binPlots(extract(csTS, 3), probeMap = lookupT, ordering = emE[,

"LNCaP-PrEC", drop = FALSE], plotType = "line", nbins = 10)

10

−6000 −4000 −2000 0 2000

−
0.

8
−

0.
4

0.
0

0.
4

Position relative to TSS

S
ig

na
l

Line Colours

(−8.02,−0.694]
(−0.694,−0.306]
(−0.306,−0.165]
(−0.165,−0.0718]
(−0.0718,0.0113]
(0.0113,0.101]
(0.101,0.222]
(0.222,0.434]
(0.434,0.801]
(0.801,6.11]

Signal:LNCaP−PrEC K9Ac Order:LNCaP−PrEC

The binPlots functions also can plot a heatmap or terrain map, both of which benefit from an
increase to the nBins argument.

binPlots(extract(csTS, 1), probeMap = lookupT, ordering = emE[,

"PrEC", drop = FALSE], plotType = "heatmap", nbins = 50)

11

Signal Intensity

−
1.

22
−

0.
49

 0
.1

3
 0

.7
6

 1
.3

8
 2

.0
1

 2
.6

3
 3

.2
5

 3
.8

8

−6000 −4000 −2000 0 2000

Position relative to TSS

B
in

2 6 10 14

log2 Expression

0:
nb

in
s

Signal:PrEC K9Ac Order:PrEC

binPlots(extract(csTS, 1), probeMap = lookupT, ordering = emE[,

"PrEC", drop = FALSE], plotType = "terrain", nbins = 50)

12

Position relative to TSS

−6000
−4000

−2000
0

2000

B
in

10
20

30
40

50

S
ignal

−1

0

1

2

3

Signal:PrEC K9Ac Order:PrEC

binPlots(rs, coordinatesTable = genes, design = designSeq[, "LNCaP IP",

drop = FALSE], ordering = emE[, "LNCaP", drop = FALSE], plotType = "heatmap",

nbins = 50, seqLen = 300, libSize = "lane")

13

Signal Intensity

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

−6000 −4000 −2000 0 2000

Position relative to TSS

B
in

2 6 10 14

log2 Expression

0:
nb

in
s

Signal:LNCaP IP Order:LNCaP

6.4 Gene set analysis of epigenetic marks

Sometimes, experiments may have a set of genes of interest (for example, genes highly expressed under
a certain condition or a pathway). A number of graphs comparing the epigenetic marks of these genes,
versus a random sample of genes, can be created in the one command. A lookup table, as created
previously, must be supplied via the parameter probeMap. The genes of interest are given in the list
geneList. Each element of the list can either be a logical vector for each gene, or alternatively,
could be an integer vector specifying the rows of the data matrix that are of interest. The confidence
interval defaults to 95%, but can be user - defined through the parameter confidence. The parameter
nSamples determines how many probes will be sampled for the null distribution (default: 1000).

The examples below illustrate the profile of a random selection of genes, with confidence bounds,
as well as the profile of the gene set of interest.

Example:

geneList <- list(`Upregulated Genes` = which(emE[, "LNCaP-PrEC"] >

1), `Downregulated Genes` = which(emE[, "LNCaP-PrEC"] < -1))

significancePlots(extract(csTS, 3), probeMap = lookupT, geneList = geneList,

titles = "H3K9ac Change Across Promoters")

14

−6000 −4000 −2000 0 2000

−
1.

0
−

0.
5

0.
0

0.
5

H3K9ac Change Across Promoters

Position relative to TSS

S
ig

na
l

Upregulated Genes
Downregulated Genes

And again for sequencing data:

significancePlots(rs, coordinatesTable = genes, design = designSeq[,

"LNCaP-PrEC IP", drop = FALSE], geneList = geneList, seqLen = 300,

titles = "IP Change Across Promoters")

15

−6000 −4000 −2000 0 2000

0.
0

0.
2

0.
4

0.
6

0.
8

IP Change Across Promoters

Position relative to TSS

S
ig

na
l

Upregulated Genes
Downregulated Genes

7 Untargeted global analysis of Epigenetic Marks

To find regions that are statistically significantly different between immunoprecipitations and inputs,
the regionStats function is used. Regions are called based on a trimmed mean score, and the score
threshold is based on the lowest cutoff that gives an acceptable False Discovery Rate (FDR). The
amount of trimming before calculation of the mean is given by meanTrim. The number of probes in
the window that have to be above the threshold for the window to be called a significant region is
given by nProbes. The FDR is calculated by randomly permuting the probe intensities a number of
times, determined by nPermutations, and the minimum ratio of regions in the permuted sample to the
actual sample is chosen as the FDR of the threshold. The threshold is progressively lowered until the
FDR becomes greater than fdrLevel, and the previous score threshold is chosen to be used in deciding
significant regions. Regions that are separated by less than maxGap bases are joined together into one
larger region. The regions are returned as a list of data frames, in the list element regions. There is
one data frame for each contrast. The examples below analyze (and randomize within) chromosome 7,
in the interest of saving time.

Example:

ind <- getCellIndices(getUniqueCdf(cdfT), unit = indexOf(getUniqueCdf(cdfT),

"chr7F"), unlist = TRUE, useNames = FALSE)

16

col <- "LNCaP-PrEC K9Ac"

regs <- regionStats(csTMNU, design[, col, drop = FALSE], ind = ind,

probeWindow = 300, verbose = FALSE)

o <- order(-abs(regs$regions[[col]]$score))

head(regs$regions[[col]][o,])

chr start end score startInd endInd
156 chr7 115927830 115929415 -7.514 151820 151864
58 chr7 17305627 17306493 -6.943 22540 22564
101 chr7 41707382 41709181 -6.138 56414 56464
162 chr7 116100065 116102081 -5.933 152375 152431
126 chr7 83660428 83663179 -5.460 104342 104413
139 chr7 98577243 98577788 -5.220 122411 122426

It may be desired to view these regions in a graphical way. The aroma.affymetrix function
writeSgr is a quick method to export the scores into a format readable by the Integrated Genome
Browser. The file created is a tab-delimited text file with three columns; chromosome name, probe
positon, and probe score. There are no column headings in the file.

Example:

writeSgr(csTS)

This the IGB view of the top differentially K9Ac enriched TSS on the forward strand, as determined
by the previous example.

At present, there is no analogous regionStats procedure for sequencing-based data.

8 Targeted analysis of epigenetic marks

Rather than looking across the entire genome (or entire region represented on a tiling microarray),
one can target the analysis to regions of interest (e.g. promoters). The blocksStats procedure is a
general-purpose tool for this. The function works in one of two modes. If the parameter useAsRegions
is set to TRUE, the start and end columns of the coordinatesTable are used as the regions to con-
sider. Otherwise, the start of the region of interest (e.g. transcription start site) is chosen based on the
strand column, and the region to use for calculation is defined by the region that starts a number of
bases upstream, defined by the parameter upStream, and a number of bases downstream, defined by
the parameter downStream. The minimum number of probes that must be present in a defined region
for statistics calculations to be carried out is given by the parameter minNRobust.

Columns for Region-level statistics are added to the input coordinatesTable data.frame, including
the average difference of probes in that specified region, t-statistics, p-values and adjusted p-values for
each column of the design matrix.

Example:

bs <- blocksStats(csTMNU, genes, design = design, upStream = 2000,

downStream = 2000)

17

Figure 1: IGB view of the most differentially K9Ac enriched region.

Processing mapping between probes and genes.
Mapping done.
Processing mapping between probes and genes.
Mapping done.

o <- order(bs$pvals.LNCaP.PrEC)

head(bs[o,])

name chr strand start end symbol selected_identifier
17631 8095728 chr4 + 75449723 75473341 EREG NM_001432
16072 8078330 chr3 + 29297946 30021624 RBMS3 NM_001003793
6109 7964733 chr12 - 64438069 64507021 LOC204010 BC107865
21673 8140668 chr7 - 83425594 83662153 SEMA3A NM_006080
501 7902527 chr1 + 78729344 78776138 PTGFR AY485530
10523 8016487 chr17 - 44157124 44161110 HOXB13 NM_006361

df.2000.2000 meandiff.PrEC.K9Ac meandiff.LNCAP.K9Ac
17631 92 1.23502355 -0.34653331
16072 100 1.52320673 0.05972448
6109 102 1.33882712 -0.29788229
21673 100 1.26707508 -0.16779986
501 90 -0.11908496 1.09636003
10523 107 -0.01776204 0.77745199

meandiff.LNCaP.PrEC.K9Ac tstats.PrEC.K9Ac tstats.LNCAP.K9Ac
17631 -1.581557 9.598198 -3.7053615
16072 -1.463482 11.049251 0.5434101
6109 -1.636709 9.095209 -3.5769065

18

21673 -1.434875 9.477559 -2.0374225
501 1.215445 -1.286236 8.0677212
10523 0.795214 -0.232270 7.0425652

tstats.LNCaP.PrEC.K9Ac pvals.PrEC.K9Ac pvals.LNCAP.K9Ac
17631 -9.502240 1.598607e-15 3.601448e-04
16072 -8.884494 5.026978e-19 5.880568e-01
6109 -8.779996 8.167226e-15 5.334785e-04
21673 -8.750984 1.384024e-15 4.424916e-02
501 8.404246 2.016599e-01 2.956143e-12
10523 8.174333 8.167720e-01 1.899730e-10

pvals.LNCaP.PrEC.K9Ac adjpvals.PrEC.K9Ac adjpvals.LNCAP.K9Ac
17631 2.545090e-15 3.417957e-13 1.175795e-03
16072 2.745724e-14 3.197620e-16 6.644236e-01
6109 4.040443e-14 1.198138e-12 1.670330e-03
21673 5.368239e-14 3.090680e-13 7.888235e-02
501 5.953247e-13 2.728532e-01 9.551859e-11
10523 6.522252e-13 8.563111e-01 3.294286e-09

adjpvals.LNCaP.PrEC.K9Ac
17631 5.115122e-11
16072 2.697272e-10
6109 2.697272e-10
21673 2.697272e-10
501 2.184737e-09
10523 2.184737e-09

Quite conveniently, the same function can also be used to perform statistical analysis on sequencing
data. The sequencing results are first read into a GenomeDataList object. There are two additional
options that become available for blocksStats when it is being used to analyse sequencing data. The
seqLen parameter can be used to extend the aligned reads to a certain length. Since the fragments
of DNA sequenced are usually longer than the reads given by the experimental procedure, this single
number argument will extend all reads based on where in the genome they align to, so that they all are
seqLen in length. The other argument specific to sequencing is total.lib.size, which is a boolean
value that specifies whether to use the total number of reads genome - wide (using the laneCounts

function), or the total number of reads falling within the starts and ends as described by coordinat-

esTable, as the library size for statistical calculations. If it is TRUE, the library size will the the number
of reads in the whole genome. FALSE will mean that the number of reads in the coorinatesTable regions
will be taken as the library size. The design matrix needs to be modified, since edgeR does pairwise
comparisons. Treatments should have 1, controls -1, and others 0.

The regionStats procedure for sequencing data will return (library size) quantile-normalized counts
and statistics for differential expression from the edgeR functions.

Example:

statistics <- blocksStats(rs, genes, designSeq[, "LNCaP-PrEC IP",

drop = FALSE], upStream = 2000, downStream = 2000, seqLen = 300,

libSize = "lane")

Generating table of counts
PrEC_IP1: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY
PrEC_IP2: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY
LNCaP_IP1: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY

19

LNCaP_IP2: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY
Processing column 1 of design matrix
Comparison of groups: 1 - -1

head(statistics)

name chr strand start end symbol selected_identifier position
1 7896759 chr1 + 781253 783614 LOC643837 AK096570 781253
2 7896761 chr1 + 850983 869824 SAMD11 NM_152486 850983
3 7896779 chr1 + 885829 890958 KLHL17 NM_198317 885829
4 7896798 chr1 + 891739 900345 PLEKHN1 NM_032129 891739
5 7896817 chr1 + 938709 939782 ISG15 NM_005101 938709
6 7896822 chr1 + 945365 981355 AGRN NM_198576 945365
PrEC_IP1 PrEC_IP2 LNCaP_IP1 LNCaP_IP2 PrEC_IP1_pseudo PrEC_IP2_pseudo

1 41 65 27 87 35.07838 53.89927
2 16 27 64 88 13.59353 22.49468
3 77 67 58 85 66.56343 54.97646
4 84 79 87 143 72.54215 64.93175
5 78 90 40 80 67.19515 74.20940
6 24 29 52 74 20.62102 23.96068
LNCaP_IP1_pseudo LNCaP_IP2_pseudo logConc_LNCaP-PrEC IP logFC_LNCaP-PrEC IP

1 46.34933 74.33991 -17.28339 0.45840201
2 104.54489 74.52252 -17.66458 2.29711660
3 94.90800 72.02990 -16.83995 0.44843534
4 143.29426 121.42386 -16.41567 0.94109028
5 66.36191 68.03676 -16.88168 -0.07316343
6 84.90444 62.66353 -17.65248 1.71386182
PValue_LNCaP-PrEC IP FDR_LNCaP-PrEC IP

1 1.736013e-01 3.338921e-01
2 7.725960e-11 2.787193e-09
3 1.423048e-01 2.891836e-01
4 1.537698e-03 8.416589e-03
5 8.663815e-01 9.890557e-01
6 9.254953e-07 1.315222e-05

The absolute number of counts within the regions can be determined with the functions annota-
tionCounts and annotationBlocksCounts. For example:

genes$position <- ifelse(genes$strand == "+", genes$start, genes$end)

head(genes)

name chr strand start end symbol selected_identifier position
1 7896759 chr1 + 781253 783614 LOC643837 AK096570 781253
2 7896761 chr1 + 850983 869824 SAMD11 NM_152486 850983
3 7896779 chr1 + 885829 890958 KLHL17 NM_198317 885829
4 7896798 chr1 + 891739 900345 PLEKHN1 NM_032129 891739
5 7896817 chr1 + 938709 939782 ISG15 NM_005101 938709
6 7896822 chr1 + 945365 981355 AGRN NM_198576 945365

counts <- annotationCounts(rs, genes, 10000, 2500, 300)

PrEC_IP1: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY
PrEC_IP2: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY
LNCaP_IP1: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY
LNCaP_IP2: chr1 chr5 chr21 chr11 chr19 chr10 chr12 chr15 chr6 chr2 chrX chr13 chr20 chr14 chr4 chr3 chr16 chr17 chr18 chr8 chr9 chr22 chr7 chrY

20

head(counts)

PrEC_IP1 PrEC_IP2 LNCaP_IP1 LNCaP_IP2
7896759 85 109 55 154
7896761 143 200 171 313
7896779 364 398 284 446
7896798 301 290 281 411
7896817 220 221 198 309
7896822 187 193 172 248

myregs <- data.frame(chr = c("chr2", "chr7"), start = c(5e+05,

1e+06), end = c(550000, 1005000), strand = c("+", "-"), name = paste("Region",

1:2))

print(myregs)

chr start end strand name
1 chr2 5e+05 550000 + Region 1
2 chr7 1e+06 1005000 - Region 2

counts <- annotationBlocksCounts(rs, myregs, 200)

PrEC_IP1: chr2 chr7
PrEC_IP2: chr2 chr7
LNCaP_IP1: chr2 chr7
LNCaP_IP2: chr2 chr7

counts

PrEC_IP1 PrEC_IP2 LNCaP_IP1 LNCaP_IP2
Region 1 364 383 184 375
Region 2 171 145 143 159

9 Utility Functions

Repitools contains a number of generally useful functions.

9.1 Importing Next Generation Sequencing Data

After alignment of Next Generation Sequencing data to the genome of interest by an external tool
(e.g Bowtie, bwa, maq, ELAND etc) we need to import the data into R for analysis. The ShortRead

packages AlignedRead function performs this, but keeps a lot of data we are not interested in any-
more (the sequence and quality scores for each read for instance). So we follow the method of the
Bioconductor chipseq package which only stores each reads chromosome, position and direction in a
compact GenomeData object.

Example:

21

require(chipseq)

rs1 <- readAligned("./", paste("^", filename, "$", sep = ""),

type = "Bowtie")

rs1 <- as(rs1, "GenomeData")

We then save this GenomeData object as an .Rdata file for later use. When working with multiple lanes
of sequencing, it is much more convenient to combine them into a single GenomeDataList object.

Example:

rs <- GenomeDataList(list(`Sample 1` = rs1, `Sample 2` = rs2))

This GenomeDataList object now can be used as input to our sequencing processing functions.

9.2 Calculating CpG Density of Specific Regions

To calculate the CpG density of specific regions of the genome, the cpgDensityCalc function can be
used. The parameter locationsTable can be a data frame with two columns, chr and position.
The number windowSize is how many bases upstream and downstream of position to take into account
for the calculation. You can weight the CpGs as a function of distance to the centre of the region of
interest, if desired.

Example:

myLocations <- data.frame(chr = c("chr1", "chr17"), position = c(1e+05,

250000))

cpgDensityCalc(myLocations, 500, organism = Hsapiens)

[1] 0.000 0.884

9.3 Reading Nimblegen Data Quickly

Using other packages usually requires definition text files or specific directory structures. The reading
has been streamlined with the function loadSampleDirectory, which loads all .pair files is a specified
directory. The first argument, path is the path of the directory where the .pair files are located.
Additionally, the parameter ndf gives a data frame representation of the releveant Nimblegen Data File,
which is the output from the processNDF function. The what argument is a great time - saver. It
describes how to process the intensities as they are being read into the matrix. The strings that can be
passed in for this argument and their effects are:

22

String Effect
Cy3 The matrix will have the log2 intensity of the green channel for each

array.
Cy5 The matrix will have the log2 intensity of the red channel for each

array.
Cy3/Cy5 The matrix will have the log2 of the ratio of the green channel to the

red channel.
Cy5/Cy3 The matrix will have the log2 of the ratio of the red channel to the

green channel.
Cy3andCy5 The matrix will have two columns for each array, the first being the log2

of the green channel, and the next being the log2 of the red channel.
Cy5andCy3 The matrix will have two columns for each array, the first being the log2

of the red channel, and the next being the log2 of the green channel.

9.4 Visualization of multiple heatmaps

See the multiHeatmap example and documentation for the creating multi-panel heatmaps allowing
complete control over colour scales and spacing between.

10 Future Directions

Analyses of next-generation sequencing data, especially for epigenomic data, are in their infancy. Further
implementations will be made available in the near future. Experimenters are encouraged to provide
feedback on the implemented routines as well as suggestions for further procedures.

11 Environment

This user manual was built using Sweave with the following R environment:

sessionInfo()

R version 2.10.1 (2009-12-14)
x86_64-pc-linux-gnu

locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=C LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] chipseq_0.2.1 ShortRead_1.4.0
[3] lattice_0.18-3 edgeR_1.4.7

23

[5] gplots_2.7.4 caTools_1.10
[7] bitops_1.0-4.1 gdata_2.6.1
[9] gtools_2.6.1 gsmoothr_0.1.4
[11] BSgenome.Hsapiens.UCSC.hg18_1.3.16 BSgenome_1.14.2
[13] Biostrings_2.14.7 limma_3.2.1
[15] RepitoolsExamples_1.0.11 Repitools_1.0.6
[17] aroma.affymetrix_1.5.0 aroma.apd_0.1.7
[19] affxparser_1.18.0 R.huge_0.2.0
[21] aroma.core_1.5.0 aroma.light_1.15.1
[23] matrixStats_0.1.9 R.rsp_0.3.6
[25] R.cache_0.2.0 R.filesets_0.8.0
[27] digest_0.4.2 R.utils_1.3.3
[29] R.oo_1.6.7 IRanges_1.4.7
[31] R.methodsS3_1.1.0

loaded via a namespace (and not attached):
[1] Biobase_2.6.0 hwriter_1.1

24

	Introduction
	Getting the Repitools package
	Getting help for the Repitools package
	Setting up the aroma.affymetrix environment
	Reading the example data
	Data summaries
	cpgBoxplots and cpgDensityPlot -- Plotting Bias/Enrichment related to CpG Density
	enrichmentPlot -- Plotting Enrichment over the whole genome
	binPlots -- average signal proximal to annotation in bins
	Gene set analysis of epigenetic marks

	Untargeted global analysis of Epigenetic Marks
	Targeted analysis of epigenetic marks
	Utility Functions
	Importing Next Generation Sequencing Data
	Calculating CpG Density of Specific Regions
	Reading Nimblegen Data Quickly
	Visualization of multiple heatmaps

	Future Directions
	Environment

